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ABSTRACT 

A large class of problems in engineering mechanics involves a so-called "complementarity" 
relationship representing the orthogonality of two sign-constrained vectors. Typical instances 
are plasticity laws and contact-like conditions. For state problems, the formulation leads to a 
mixed complementarity problem (MCP) whereas in synthesis (e.g. minimum weight design) 
or identification problems, a mathematical program with equilibrium constraints (MPEC) is 
obtained. The aim of this paper is two-fold. Firstly, it describes, through two typical models, 
how some important engineering mechanics problems can be formulated elegantly and 
naturally as either an MCP or an MPEC. Secondly, it describes a powerful computer-oriented 
environment for constructing and solving these mathematical programming problems, with 
features such as sparsity and automatic differentiation facilities being transparently accessible. 
This involves the use of the modeling language GAMS (an acronym for General Algebraic 
Modeling System) and its associated mathematical programming solvers (e.g. the industry 
standard MCP solver PATH). A simple generic model suitable for solving the state problem 
for trusses is used to clarify the syntax of GAMS models and to illustrate the ease with which 
they can be built and solved. 
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INTRODUCTION 

Complementarity, namely the requirement that two sign-constrained vectors are orthogonal, is 
a typical and recurrent mathematical structure of many state, design and inverse problems in 
nonlinear mechanics. This was first recognized in the late 1960s by Maier whose seminal 
work led some years later to the NATO conference "Engineering Plasticity by Mathematical 
Programming" (Cohn and Maier 1979), with important contributions by prominent 
researchers from both engineering and mathematical programming communities. The 
proceedings of that workshop still represent a valuable source of information on the elegant 
and powerful framework provided by mathematical programming, in particular 
complementarity, to discrete plasticity. More recent sources of reference, specifically on some 
engineering and economic applications of complementarity problems, are the review paper by 
Ferris and Pang (1997a) and the proceedings of the first "International Conference on 
Complementarity Problems" (Ferris and Pang 1997b). 

To engineers, the study and application of complementarity notions in mechanics should have 
a twofold appeal: a refined mathematical formalism rich in useful theoretical results and a 
wealth of efficient and robust numerical algorithms. Unfortunately, the application of such 
concepts has been sporadic and below expectation. For instance, plasticity problems 
(involving a set of complementarity conditions between yield functions and plastic strains) are 
still largely solved through the iterative use of linear solvers when a complementarity 
formulation would automatically choose which inequalities to satisfy as equations. 

The motivation of this paper is to show how modeling systems and their associated 
mathematical programming solvers can help with model building and solution of a number of 
important engineering mechanics problems, all characterized by the presence of 
complementarity conditions. In particular, we adopt the well-known governing equations of a 
simple holonomic (path-independent or nonlinear elastic) elastoplastic discrete model (a) to 
show how a state problem can be formulated as a mixed complementarity problem (MCP); (b) 
to formulate a minimum weight problem as an instance of a mathematical program with 
equilibrium (complementarity in our case) constraints (MPEC); and (c) to describe how the 
modeling system GAMS, an acronym for General Algebraic Modeling System (Brooke et al. 
1992), can be used to model and solve, using the industry standard MCP solver PATH (Dirkse 
and Ferris 1995a), a simple example of the state problem for elastoplastic trusses. 

GOVERNING RELATIONS FOR DISCRETE HOLONOMIC PLASTICITY 

We refer to a suitably space-discretized structural system, the constituents (finite elements) of 
which obey holonomic plasticity laws. The governing relations for the whole structure can be 
elegantly expressed through generalized variables (see e.g. Cohn and Maier 1979) as follows: 

f = CTx,   q = Cv, (1,2) 

q = e + p,   x = Se,   p = Nz, (3,4,5) 

w = -NTx + Hz + r>0,   z>0,   wTz = 0. (6) 



Vector and matrix quantities represent the unassembled contributions of corresponding 
elemental entities as concatenated vectors and block-diagonal matrices, respectively. For a 
structure with d degrees of freedom and m member generalized quantities, Eqn. 1 expresses 
equilibrium, through compatibility matrix Ce 9Txrf, between the nodal loads / e W and the 

natural stresses ^eT. Eqn. 2 describes linear compatibility of strains qeSim with the 

nodal displacements veSid. Relations 3-6 embody the holonomic constitutive laws. The 
additivity of elastic eeSi" and plastic pe 3im strains is given by Eqn. 3. Linear elasticity is 

represented in Eqn. 4, where S e 9Txm collects unassembled element stiffnesses. Plastic 
strains p are defined in Eqn. 5 by an associated flow rule in term of the plastic multipliers 
zeSiy (y = number of yield functions) through the matrix of outward normals N e Simxy to 
the yield surface. Finally, we define in Eqn. 6 a linear (yield) function w(x(z), z): 9F -> 9ty 

which is complementary with the nonnegative plastic multiplier vector z and which 
accommodates, through H e 3iyxy, a class of hardening models with yield limits r e 9F. 

COMPLEMENTARITY MODELS 

Based on the governing relations given by Eqns. 1-6, we are now in a position to formulate 
two types of mathematical problems involving complementarity. As representative models, 
we describe a standard state problem cast as an MCP and then a minimum weight synthesis 
problem as an MPEC. 

State Problem (MCP) 

The holonomic state problem requires the calculation of the state variables (x, v, z) for a 
given structure (i.e. for specified material and geometric properties) and loading. Since we 
intend to use the GAMS modeling system for solving this problem, we adopt a "mixed" 
formulation involving both static (x) and kinematic variables (v, z) (at variance with the usual 
approach of using z variables only). 

After some obvious substitutions, the problem then becomes one of finding (x, v, z) from the 
following relations: 

CTx-f = 0, 

S~1x-Cv + Nz = 0, 
(7) 

w = -NTx + Hz + r>0,   z>0,   v/z = 0, 

- °° < (x, v) < + °°. 

The problem given by Eqn. 7 is an example of a general MCP (Dirkse and Ferris 1995a), for 
which it is required to find zeSi" for given lower / and upper bounds u (-°°<£<u< + °°) 

and a function   F: 91" -> 9T, such that precisely one of the following holds for each 



F,=0  and   .£,. <z,. <«,., 

F,>0   and   z,=£„ (8) 

i5] <0   and   zi=ui. 

Our MCP (Eqn. 7) can be solved using standard methods if hardening is adopted. In certain 
instances, however, such as when softening laws are assumed, there is no guarantee that any 
of known algorithms will solve the problem (see e.g. Tin-Loi and Ferris 1997). 

Minimum Weight Problem (MPEC) 

The minimum weight problem we use as an example of an MPEC was first formulated by 
Kaneko and Maier (1981) and later revisited by Ferris and Tin-Loi (1999a) with a view 
towards more efficient and robust solution schemes, especially for large-scale structures. The 
problem can be described briefly as follows. Under the assumptions of a fixed topology and 
specified loads, we wish to minimize the volume of the structure under the additional 
constraints that certain or all displacements and plastic deformations are kept within 
prescribed serviceability limits. The yield limits r, stiffnesses S and hardening parameters H 
of the constituent members of the structure are all regarded as unknown but assumed to be 
(continuous) functions of the cross-sectional areas of all n elements. 

For simplicity of exposition, assume a truss-like structure of n members, for which the 
unknown element areas are collected in vector ae3i" and the known element lengths in 
vector leSi". Assuming that explicit expressions for member stiffnesses S(a) and hardening 
matrices H(a), in terms of a are available, the minimum volume (weight) problem can then 
be formally stated as the following constrained optimization problem in (a, x, v, z) ■ 

min   fa 

subject to   CTx - f - 0, 

x - S(a)Cv + S(a)Nz = 0, 

w = -NTx + H(a)z + r(a)>0,   z>0,   wTz = 0, 

- V < V < V, 

z<z, 

ae <a<au, 

Ta = 0, 

where ve3id is a vector of nonnegative deflections limits; z € Siy is a vector of prescribed 
upper bounds on plastic multipliers used to model the limited ductility of the members; 
ae G 91" and au e 9T are, respectively, lower and upper bounds on the cross-sectional areas; 



and T e 9l'x" is a technological matrix imposing t constraints (e.g. identical areas for groups 
of members) on the design variables (areas). 

The optimization problem given by Eqn. 9 is a special case of an MPEC (Luo et al. 1997) in 
which the equilibrium system takes the form of a complementarity condition. MPECs are 
much harder to solve than MCPs. Whilst an extensive theory of first and second order 
optimality conditions for MPECs has been developed, still relatively little is known about the 
numerical solution of practical, large-scale MPECs likely to arise in realistic applications. The 
most prominent feature of an MPEC, and one that distinguishes it from a standard nonlinear 
program, is the presence of complementarity constraints. These constraints classify this class 
of mathematical programs as a nonlinear disjunctive (or piecewise) program and therefore 
carries with it a "combinatorial curse". Recent work by Dirkse and Ferris (1999) describes 
several new tools for modeling MPECs that are built around the introduction of an MPEC 
model type into the GAMS language, ready to be linked to newly developed solvers. We, 
however, have had considerable success in modeling and solving MPECs for a variety of 
engineering mechanics problems (Ferris and Tin-Loi 1998, 1999a, 1999b) as a series of 
nonlinear programming problems using the GAMS environment and its associated nonlinear 
programming solver CONOPT (Drud 1994). 

MODELING WITH GAMS 

GAMS is a high-level modeling language specially designed to facilitate the construction, 
solution and maintenance of large and complex mathematical programming models. It is a 
high level declarative language for formulating small to very large mathematical 
programming models using simple and concise algebraic statements which mirror the actual 
mathematical constructs involved. A GAMS model is transparent to both human and 
computer, is easily modified and moved across different computing platforms from notebooks 
to mainframes, and is independent of the solution algorithm of the mathematical programming 
solvers. It not only frees the model builder from the burdens imposed by the solution phase 
but also takes over the steps required for generation of the model. In addition to providing 
simplicity and compactness of model construction, it possesses important capabilities such as 
an internal efficient sparse data representation and automatic differentiation. 

A number of mathematical programming problems types can be solved via GAMS. In 
addition to the MCP problem type, other available model types are LP (linear programming), 
NLP (nonlinear programming), MLP (mixed integer programming), RMIP (relaxed mixed 
integer programming), MINLP (mixed integer nonlinear programming), RMINLP (relaxed 
mixed integer nonlinear programming) and CNS (constrained nonlinear systems). GAMS is 
continually evolving and adapted as new algorithms and problem classes have been explored. 
We refer the interested reader to the extensive GAMS library of models (from such diverse 
areas as economics, chemical engineering, trade, etc.) accessible from the GAMS website 
(http: / /www. gams. com), and to Dirkse and Ferris (1995b) for GAMS models of MCPs. 

In order to illustrate the typical structure and syntax of a GAMS model, we list in Fig. 1 a 
simple model (state.gms) suitable for the large-scale holonomic analysis of elastoplastic 



trusses. The GAMS file is written using a standard text editor and executed through a "gams 
state" command. Readers versed in GAMS will recognize the sets, variables, etc. 
declarations, while those not familiar with GAMS will appreciate the concise yet descriptive 
style and will also immediately recognize the parallel to the MCP given by Eqn. 7. We have 
purposely separated the model proper from its input data which is inserted at compile time 
through the $include state.dat statement. Note also the (optional) matching of free 
variables to equations in the model statement, allowing GAMS to check that there are the 
same number of free variables as equations. 

sets 

d 'No. of structure dof 

m 'No. of members' 

Y 'No. of yield functions per member' 

alias (y,yy) / 

parameters 

f (d) 'Load vector' 

C(m,d) 'Compatibility matrix' 

S(m) 'Member stiffness' 

N(m,y) 'Normal matrix' 

H(m,y,y) 'Hardening matrix' 

r (m,y) 'Yield limits'; 

variables 

x(m) 'Member stresses' 

v(d) 'Displacements'; 

positive variables 
z(m,y) 'Plastic multipliers'; 

equations 
egl(d) 
eq2(m) 
eq3 (m,y) ,- 

eql(d)        ..   sum(m,C(m,d)*x(m))-f(d)   =e=  0; 
eq2(m)        ..    (1/S(m))*x(m)-sum(d,C(m,d)*v(d))+sum(y,N(m,y)*z(m,y))   =e=   0; 
eq3(m,y)    ..   -N(m,y)*x(m)+sum(yy,H(m,y,yy)*z(m,yy))+r(m,y)   =g=  0; 

model  state   /eql.v,   eq2.x,   eq3.z/; 
$include  state.dat 
solve state using mcp; 
display v.l,x.l,z.l; 

Figure 1: A simple GAMS MCP state model state. gms 



As a simple and specific example of data input, consider the academic three-bar truss shown 
in Fig. 2. Relevant data state.dat in GAMS format are also indicated. The compatibility 
matrix for this simple example is explicitly entered (rather than generated as it would be for a 
large problem). A simple noninteracting hardening matrix (with nonzero diagonal entries) is 
assumed. On executing this GAMS model using the default solver PATH a displacement 
vector v = (1.518, 0.642) and indication that only bar 1 yields (in tension) will be obtained. 

400 

sets d   / dl*d2 / 
m   / ml*m3 / 
y   / yl*y2 /; 

f("dl") = 400; f("d2") = 600; 

CC'ml", "dl") = 0.6; 
CC'ml", "d2") = 0.8; 
C("m2","d2") = 1; 
C("m3","dl") = -0.6; 
C("m3","d2") = 0.8; 

SC'ml") = 400; S("m2") = 500; 
S("m3") = S("ml"); 

N(m,"yl") = 1; N(m,"y2") = -1 
H(m,y,y) = 0.125*S(m); 
r(m,y) = 500; 

Figure 2: Three-bar truss and associated state. dat input 

CONCLUSIONS 

A large number of important problems in nonlinear mechanics (e.g. plasticity and those with 
contact-like conditions) involve complementarity relationships. Indeed, as shown in this 
paper, the most natural, elegant and powerful method of tackling these problems is often as 
mathematical programming problems involving the complementarity relations explicitly. The 
two main problem classes (MCP and MPEC) which arise can both be modeled and solved 
within the GAMS modeling environment, using its industry standard solvers. 

We argue, by illustrating how easily MCPs and MPECs can be formulated and modeled for a 
specific instance of holonomic plasticity, that modeling systems can provide the impetus 
required for wider use of mathematical programming methods in solving practical problems 
involving complementarity conditions in engineering mechanics. Hopefully, such work will 
also lead to increased synergetic interaction between modelers and algorithm developers. 
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